4.1.1 A quick review of FV input and output interface
Overall
Before | After |
load dataset from local load weights from local validating save result at local |
load dataset from os.environ["INPUT_PATH"] # step 2 load model weights from os.environ["WEIGHT_PATH"] # step 2 validating Prepare an output dictionary # step 1 save the output dictionary to os.environ["LOCAL_MODEL_PATH"] # step 2 |
Input interface
- INPUT_PATH with examples
Before | After |
# import cv2 img = cv2.imread("./dataset/img1.jpg") |
# import cv2 img = cv2.imread(os.environ["INPUT_PATH"]+"/dataset/img1.jpg") |
# import pandas as pd df = pd.read_csv("./data.csv") |
# import pandas as pd df = pd.read_csv(os.environ["INPUT_PATH"]+"/data.csv") |
- WEIGHT_PATH: Load pre-trained weights from the path into the model.
- OUTPUT_PATH: Save the prepared dictionary as $OUTPUT_PATH/result.json. Remember to import json in advance.
Output interface
- metadata: dict
- dataSize: int # MUST. It is the number of the validation data.
- results: dict
The categories are all OPTIONAL. If len(tables) is 3, you will see 3 tables on the dashboard. Each instance in a category is passed by a dict. e.g. tables["title"] means the title of the table.- tables: list[dict] # It's 1-D table, so input 1-D column name and value.
- title: str
- labels: list[str]
- values: list[num]
- bars: list[dict]
- title: str
- labels: list[str] # e.g. names of M categories
- y-axis: str
- values: list[num] # e.g. values of M categories
- heatmaps: list[dict]
- title: str
- x-axis: str
- y-axis: str
- x-labels: list[str]
- y-labels: list[str]
- values: list[list[num]]
- plots: list[dict]
- title: str
- x-axis: str
- y-axis: str
- x-values: list[list[str]] # e.g. M*N means M categories with each N time series points
- y-values: list[list[str]] # e.g. M*N means M categories with each N time series points
- labels: list[str] # e.g. Must be M categories as above
- images: list[dict]
- title: str
- filename: str # The image name saved in OUTPUT_PATH
- tables: list[dict] # It's 1-D table, so input 1-D column name and value.